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Summary
Silicon carbide (SiC) and Si3N4 materials were tested in

various turbine engine combustion environments chosen to
represent either conventional fuel-lean or fuel-rich mixtures
proposed for high-speed aircraft. Representative chemical
vapor-deposited (CVD), sintered, and composite materials
were evaluated by furnace and high-pressure burner rig expo-
sures. Although protective SiO2 scales formed in all cases, the
evidence presented supports a model based on paralinear growth
kinetics (i.e., parabolic growth moderated simultaneously by
linear volatilization). The volatility rate is dependent on tem-
perature, moisture content, system pressure, and gas velocity.
The burner tests were thus used to map SiO2 volatility (and SiC
recession) over a range of temperatures, pressures, and veloci-
ties. The functional dependency of material recession (volatil-
ity) that emerged followed the form A Q RT P vx yexp −( )[ ]( )/ .
These empirical relations were compared with rates predicted
from the thermodynamics of volatile SiO and SiOxHy reaction
products and a kinetic model of diffusion through a moving
boundary layer. For typical combustion conditions, recession
of 0.2 to 2 µm/hr is predicted at 1200 to 1400 °C, far in excess
of acceptable long-term limits.

Introduction

Silicon carbide composites have been proposed as liner
material for advanced combustors in turbine engines. Here the
operational pressures are about 10 atm. Conventional (lean)
operation produces a combustion product consisting of

10%O2–8%H2O–7%CO2–bal.N2 at an equivalence ratio φ of
0.5 (ref. 1). Other combustor concepts use a rich-burn
prechamber in which a hyperstoichiometric mixture of fuel
to air (φ of about 1.5) is burned with a projected combustion
chemistry of 6%H2–12%H2O–12%CO–5%CO2–bal.N2. The
rich-burn segment is followed by a quick air-quench and lean
aft-burn segment. Volatile reaction products between the SiO2
scales and the combustion gases have been a concern of this
program. It was shown in allied furnace thermogravimetric
analysis (TGA) exposures that Si(OH)4(g) and SiO(g) are
produced when SiC is exposed to model lean and rich gases,
respectively (refs. 2, 3, and D.S. Fox, E.J. Opila, and R.E. Hann,
1999, unpublished data). Although a scale is first produced by
oxidation, it then reacts with the gas to form a volatile second-
ary product. This reaction gives rise to paralinear kinetics and
accelerated consumption of the substrate (recession) (ref. 2),
which represents a nonprotective oxidation regime. Conse-
quently, long-term exposures are predicted to produce linear
attack rates. These rates are determined by the thermodynamics
of the equilibrium vapor species, the ambient pressure, and the
gas velocity. Although a number of burner rig studies have been
performed on SiC (ref. 4), only one has recently combined the
use of high pressure and high velocity to clearly produce weight
loss (ref. 5). No previous studies have addressed the effect of
rich-burn combustion.

The purpose of the present study was to examine the behav-
ior of pure, chemical vapor-deposited (CVD) SiC under a
variety of high temperatures, pressures, and velocities for both
lean-burn and rich-burn combustion. The study was conducted
in a high-pressure burner rig (HPBR). Some experimental
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results are presented in greater detail in previous reports
(refs. 6 and 7), and chemical mechanisms are covered in greater
depth in reference 8. The volatility rates in HPBR tests are
compared with those measured in the furnace TGA tests and
those calculated from the thermodynamic diffusion model. For
comparison, recession rates were also obtained on CVD and
sintered Si3N4 materials.

Experiment

High-purity CVD SiC and Si3N4 materials (Bomas Machine
Specialties and Advanced Ceramics Corp.) were machined to
0.3- by 1.3- by 2.5-cm TGA specimens or to 0.3- by 1.3- by
7.6-cm HPBR specimens. Thermogravimetric analysis tests
were performed with Cahn 1000 microbalances and furnaces
using quartz tubes. Model lean exposures employed a
50-percent H2O/O2 mixture to approach the high water vapor
pressure of a combustor (ref. 2). This mixture is compared with
a moisture content of 8 percent × 10 atm, or 80 percent, which
would be more representative of the actual combustor condi-
tions. A special double-chamber water saturator, followed by
tape-heated gas lines, was employed to insure accurate control
of the moisture content. The gas flow was 4.4 cm/s. Model rich
exposures were made in a premixed gas flowing through a
similar saturator to give 4%H2–12H2O–10%CO–7%CO2–N2
flowing at 0.44 cm/s (D.S. Fox, E.J. Opila, and R.E. Hann,
1999, unpublished data).

An existing high-pressure burner rig was extensively
modified to allow lean-burn and rich-burn testing of
multiple ceramic specimens (fig. 1). References 6 and 7 give
details of the rig construction and operation. The basic opera-
tion entails pressurized fuel and air injection (in an air blast
nozzle and swirl plate dome section), ignition (by hydrogen gas
at a spark plug), and combustion product formation (in an air-
cooled, thermal-barrier-coated combustor can). The gaseous
combustion products proceed through a water-cooled transi-
tion section and lose heat in the process. Specimens are
arranged in a wedge configuration in a water-cooled specimen
holder, pneumatically actuated into or out of the flowing gas.
The gas temperature is measured by a Pt–Pt13Rh thermocouple
at a position just behind the samples. The sample temperature
is measured by two-color optical and laser pyrometry (lean-
burn only). The luminous flame produced under rich conditions
precluded measurements by optical pyrometry. Therefore, rich-
burn temperatures were determined from thermocouple mea-
surements of gas temperature and a specimen temperature
calibration curve produced from lean conditions.

The intention was to determine volatility rates over a range
of temperatures, pressures, and velocities. To that end, some
flexibility in operational parameters existed; however, an inter-
dependence between variables resulted in certain restrictions.
Nominal fuel-lean combustion at φ = 0.8 to 0.9 and fuel-rich
combustion at φ = 1.8 to 2.0 produced sample temperatures
from 1200 to1450 °C.  Standard operating pressure and velocity
were 6 atm and 18 to 25 m/s, respectively. For selected tests, the
pressure was also varied from 4 to 15 atm whereas velocity for
the most part was a dependent variable.

Quench
Water

Thermocouple

Pressure 
Valve

Exhaust

Air

Samples

Sample holder shaft

Nitrogen

Fuel

Combustor

Hydrogen

Ignitor

SwirlerTurbulator

FLOW

Back flow
restriction

R J C 

Figure 1.—NASA Glenn high-pressure burner rig (HPBR).
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Results

Furnace Tests

In model lean furnace tests, mixtures of 10 percent H2O/O2
failed to produce appreciable differences in kinetics from tests
performed in dry O2 environments. However, at 50 percent
H2O/O2, which would be more representative of a moist envi-
ronment at high pressures, a negative (paralinear) deviation
from parabolic kinetics was observed. An analysis of weight
change data yielded a parabolic growth constant kp and a linear
recession rate kl (ref. 2). A typical curve and fitted parameters
for CVD SiC oxidized in 50 percent H2O/O2 (lean) at 1200 °C
are given in figure 2. The actual (sawtooth) data and fitted net
weight change (smooth) curves are coincident and provide a
high degree of confidence for the mathematical model. The
model weight gain curve is indicative of the amount of scale
present on the sample, whereas the model weight loss curve
indicates the amount of Si (and C) lost during oxidation and
SiO2 scale volatilization. There was only a slight temperature
dependence of kp and kl in lean furnace tests with water vapor
(refs. 2 and 9).

A comparison of the SiC weight loss rates in lean and rich
furnace test environments is presented in the Arrhenius plot of
figure 4. A higher temperature dependency is observed for rich
environments. It should be noted that the fuel-rich tests were
performed at one-tenth the gas flow of the fuel-lean exposures.
Also, x-ray diffraction and scanning electron microscopy (SEM)
confirmed that a continuous cristobalite scale was present
under all furnace exposures and that active oxidation was not
responsible for these weight losses.
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Figure 2.—Paralinear weight change curves for CVD 
   SiC in synthetic 50-percent H2O/O2 (lean) furnace TGA 
   environment at 1200 °C. Parabolic growth constant, 
   kp, 2.7310–3 mg2/cm4·hr; linear recession rate, kl, 
   5.3310–3 mg/cm2·hr.
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A strong temperature dependence of SiC recession due to
SiO2 volatility was produced in synthetic rich gas mixtures, as
shown in the composite TGA curves of figure 3. Here, very
little volatility could be detected below 1350 °C using the same
paralinear model and data analysis (D.S. Fox, E.J. Opila, and
R.E. Hann, 1999, unpublished data). However, at 1400 °C and
above, the volatility rates were appreciable.

S
p

ec
ifi

c 
w

ei
g

ht
 c

ha
ng

e,
 m

g
/c

m
2

Figure 3.—Temperature dependence of weight change
   behavior of CVD SiC in synthetic fuel-rich TGA furnace
   environments (4%H2–12%H2O–10%CO–7%CO2–N2).
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Burner Rig Tests

In HPBR testing, linear weight loss rates were also observed,
although the initial interval of weight gains characteristic of
paralinear oxidation was generally not observable. Selected test
results are shown in figure 5 for CVD SiC tested under fuel-lean
conditions. Linear rates of thickness loss were also observed and
showed similar temperature dependencies (ref. 7). The correla-
tion between SiC thickness and weight loss, calculated from the
density of SiC (3.2 g/cm3), is 3.1 µm for each milligram per square
centimeter of SiC consumed. Accordingly, a factor of 2.9 was
measured experimentally and demonstrated that weight loss is
also a reliable indicator of surface recession.

More than 30 test runs at 6 atm yielded the two corresponding
Arrhenius curves in figure 6. In comparison with lean combus-
tion, a somewhat higher absolute recession rate and activation
energy are indicated for rich combustion. Sintered SiC (Hexoloy)
and several composite samples (DuPont SiC/SiC, enhanced
SiC/SiC, Supertemp, and RT 42 coatings) all exhibited weight
loss behavior basically equivalent to that of CVD SiC under the
same range of test conditions.

Similar experiments were performed on CVD and sintered
(AS 800) Si3N4 under fuel-lean conditions. The weight change
curves in figure 7 show immediate linear loss rates for the CVD
material but show paralinear behavior for the sintered Si3N4.
Paralinear behavior (i.e., initial weight gains before approach-
ing a linear weight loss rate) was reported for furnace tests of
SiC and Si3N4 in water vapor (refs. 2, 9, and 10). The tempera-
ture dependency of Si3N4 recession rates exhibits activation
energies similar to those for SiC in the Arrhenius plot of
figure 8. However, the absolute value of the rate is 1.8 times that
of SiC. In synthetic (50 percent H2O/O2) fuel-lean furnace
TGA tests, the same materials exhibited volatility rates nearly
equal to those of SiC (ref. 10). At this time there is no plausible
explanation for these differences.

Another series of tests determined that increased pressure
resulted in increased volatility rates (ref. 7). However, an
absolute relationship cannot be directly claimed because of the
simultaneous decrease in velocity. Pressure effects will there-
fore be discussed after the general volatility model is presented.
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Figure 5.—Effect of sample temperature on linear rate of
   SiC weight loss under fuel-rich HPBR combustion. 
   Pressure, P, 6 atm; velocity, v, 18 to 20 m/s.
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Figure 6.—Comparative Arrhenius plots of SiC recession
   rates under fuel-rich and fuel-lean HPBR combustion. 
   Pressure, P, 6 atm; velocity, v, 18 to 20 m/s.
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Figure 7.—Linear and paralinear oxidation curves for CVD
   and sintered (AS 800) Si3N4 under lean-burn combustion.
   Pressure, P, 6 atm; velocity, v, 21 to 23 m/s.
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Figure 8.—Comparative Arrhenius plots of SiC and Si3N4 
   lean-burn recession rates. Activation energy, Q, for SiC,
   111 kJ/mole·K and for Si3N4, 108 kJ/mole·K 
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Discussion

Volatility Rate Model

The general temperature dependence derives from the equi-
librium constants of pertinent reactions:

∆G RT Ko eq= − ln ( )1

For example, the reaction of SiO2 (a = 1) with water vapor has
an equilibrium vapor pressure of Si(OH)4 given by

SiO ( )2 42 2+ ( ) = ( ) ( )H O g Si OH g2

K
P

a P
eq =

⋅





( )Si OH

SiO H O
2

2

4

2
3( )

P
G

RT
Po

Si OH O( ) = 



 ⋅

4
2 4exp

–
H2

∆
( )

or for a possible rich-burn reaction,

SiO H g SiO g H O g2 2 2+ ( ) = ( ) + ( ) ( )5

K
P P

a P
eq =

⋅( )
⋅





SiO H

SiO H

2

2

O

2

6( )

P
G

RT

P

P
o

SiO
H

H O
exp 2

2

= 



 ⋅–

( )
∆

7

A model of SiO2 volatilization was developed in detail in
references 2 and 8 and is illustrated in the schematic of
figure 9. In short, material removal was approximated by the
diffusion of a volatile species (shaded spheres) through a
boundary layer moving with laminar flow across the reactant
surface. Ideally, velocity varies across the boundary layer from
zero at the sample surface to the free-stream velocity at the
boundary edge (vectors). The equation describing such a flux
is given by (ref. 2):

J
D v

L
= ( ) ( ) 



0 664 81 2 1 3. ( )/ /Re Sc

ρ

or equivalently,

J
vL

h

h

D

D

L
= ′



 ′











0 664 8

1 2 1 3

. ( )
/ /

ρ
ρ

ρ
a

where Re is the Reynolds number, Sc is the Schmidt number,
D is the interdiffusion coefficient for the volatile species in the
combustion gas, ρ is the concentration of the volatile species at
the solid-gas interface, v is the linear gas velocity, L is the
characteristic sample length parallel to the flow and over which
the volatility is averaged, ρ′ is the concentration of the major
gas component, and h is the gas viscosity. Other details required
for the calculation are described in references 2 and 8. The
objective herein is to illustrate the origins of the terms required
to represent a simple functional relationship between recession
rate and temperature, pressure, and velocity.

The net result of the factors in equations (4), (7), and (8) on
the flux of Si(OH)4 and SiO volatile products is given by
equations (9) and (10), respectively:
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Given that the pressure of the reactants varies directly with the
total system pressure, the functional forms can be further
simplified:
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Figure 9.—Model of physical SiO2 scale volatility process
   (gaseous diffusion through a moving boundary layer) 
   and corresponding SiC recession.
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Comparison With Measured Data

A general parametric dependency according to

exp −( )[ ]( )Q RT P vx y/  can thus be expected for recession

rates. From the appropriate thermodynamics and flow condi-
tions, the vapor species flux was calculated for a low-velocity,
1-atm furnace (fig. 10) and for a high-velocity, 6-atm burner rig
(fig. 11), and the results were compared with experimental data.
For lean exposures, good agreement exists for the measured
and calculated values if an Si(OH)4 gaseous reaction product
(fig. 10) is assumed.

For rich exposures, good agreement was found for the furnace
tests if an SiO vapor species was assumed (fig. 11). However,
the higher pressures of the burner rig tests resulted in the
predicted vapor pressure and contribution of this species being
minor. The potential contribution of the Si(OH)4 species is
shown, but the lack of agreement suggests that other species
may be controlling. Although SiO(OH)2 and Si2(OH)6 mol-
ecules have been considered, the available thermodynamic data
do not yet support any single species (ref. 8).

Figures 10 and 11 also show the Langmuir rates as an upper
bound to what would be predicted if there were no gaseous
boundary layer diffusion control or to what would be approached
as the flow exceeded turbulent conditions:

J P
M

RTLangmuir species
species

2
=





π

1 2

11
/

( )

where P is the equilibrium vapor pressure and M is the molecu-
lar weight of the volatile species. The Langmuir rates are at
least 2 orders of magnitude greater than those produced by
HPBR exposures. Thus, the volatility rates measured in burner
rig tests more nearly approach those calculated from the bound-
ary layer equation, even though ideal laminar flow was not
expected in these tests.

Normalized Recession Rates

A second series of HPBR experiments was performed to
illustrate the effects of pressure and velocity. The twofold
purpose was to verify the diffusional model and to provide key
information (Q and x) regarding the controlling chemical
mechanism. Velocity and pressure were interdependent vari-
ables in the high-pressure burner rig; therefore, the data were
displayed in figure 12 according to a combined variable
(i.e., normalized with respect to the factor P3/2v1/2). The results
show that rich and lean exposures produce recession rates that
conform reasonably well to a boundary layer diffusion model
with a P3/2 pressure dependency, where again the rich-burn
rates and activation energy were higher. More precisely, a
multiple linear regression analysis of lean and rich data sets,
containing 24 and 34 points, respectively, yielded the following
fits to the data (ref. 7). For lean,

k
RT

P vl mg / cm exp
–108 kJ / mole2 ⋅( ) = ⋅



hr

k
2 04

12

1 50 0 50.

( )

. .

and the correlation coefficient R2 = 0.98.
For rich,

k
RT

P vl mg / cm exp
–159 kJ / mole2 ⋅( ) = ⋅



hr

k
82 5

13

1 74 0 69.

( )

. .

and R2 = 0.95.

where the linear recession rate is in milligrams per square
centimeter per hour, the pressure is in atmospheres, the velocity
is in meters per second, and temperature is in Kelvin.

The lean relationship is thus in exceptional agreement with
the predicted P3/2v1/2 boundary layer analysis, which includes
the pressure dependency for the Si(OH)4 molecule. The rich
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relationship is less clear, exhibiting a nonideal velocity expo-
nent and a pressure dependency somewhat higher than 3/2, in
disagreement with the proposed P–1/2 relationship for SiO
formation. In any event, these empirical equations can be used
to predict recession for a variety of conditions. Examples of
lean-burn and rich-burn recession under some generic combus-
tor conditions are presented in table I. Clearly, high values are
obtained at temperatures equal to or greater than 1200 °C. High
rates would also be expected for turbine airfoils because of the
higher pressures and velocities associated with this stage.

Conclusions

The oxidation behavior of chemical vapor-deposited (CVD)
and sintered SiC and Si3N4 materials was evaluated under
synthetic furnace and actual high-pressure burner rig fuel-lean
and fuel-rich combustor conditions. All tests yielded weight
loss rates indicative of gaseous reaction products. The furnace
test rates agreed with model calculations based on Si(OH)4
(fuel-lean) or SiO (fuel-rich) volatile species. The high-
pressure burner rig tests yielded pressure and velocity depen-
dencies that also suggested volatilization phenomena. Good
regression fits to the recession rates were obtained for the
functional form A Q RT P vx yexp −( )[ ]( )/ . Recession was higher
in the fuel-rich rig test than in the fuel-lean rig test, but both will
result in significant recession after long-term exposures. The
critical fuel-lean species appeared to be Si(OH)4 in the furnace
and burner rig but is known to be SiO only for the fuel-rich
furnace (atmospheric) condition. The Si3N4 materials also
exhibited scale volatility in the fuel-lean furnace and rig tests.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, April 12, 1999
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Figure 12.—Universal SiC recession rates in HPBR tests,
   normalized for all pressures and velocities by the factor
   P3/2v1/2.

Reciprocal temperature, 10,000/T, K–1
5.8 6.0 6.2 6.4 6.6 6.8

10–4

10–3

10–2 Rich burn

Lean burn

kl = 355 exp        P1.5v0.5–165 kJ/mole
RT

kl = 2.06 exp        P1.5v0.5–108 kJ/mole
RT

TABLE I.—PROJECTED SiC RECESSION FOR
VARIOUS TEMPERATURES UNDER GENERIC

COMBUSTOR CONDITIONS
[Pressure, 10 atm.]

Temperature,
T,

Lean burn
(velocity, 90 m/s)

Rich burn
(velocity, 30 m/s)

°C Recession rate,
kl ,

µm/1000 hr
1000
1100
1200
1300
1400
1500

70
140
270
480
790
1230

40
130
330
760
1580
3010
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